

Att skriva Rasch-baserade manus

Peter Hagell, RN PhD

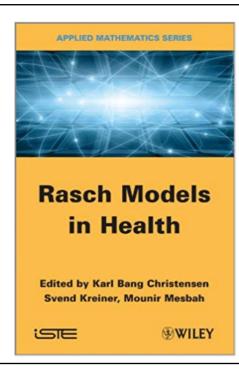
The PRO-CARE Group, Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden

Journal of Applied Measurement

GUIDELINES FOR MANUSCRIPTS

Reprinted from Smith, R.M., Linacre, J.M., and Smith, Jr., E.V. (2003). Guidelines for Man 198-204.

Following the guidelines, we provide a list of references that may assist individuals in gaining an overview of some of the ma discussed in the guidelines. The guidelines and the list of references are by no means exhaustive. If you feel an important refe-been left out of have a recommendation for the guidelines, please e-mail us your suggestions (rsmith@jampress.org, mike@w or eventile@uic or eventile@uic e-mail us.)


- - 1. Adequate references, at least reference to Georg Rasch (1960) when appropriate
 - 2. Adequate theory, at least exact algebraic representation of the Rasch model(s) used and citation for primary developer(s)

 - Rationale for using Rasch measurement techniques. For example, this may include the p asch models embody, the goal of establishing generalized reference standard metrics, or sample, a comparison of the generalizability of the estimated parameters obtained from ca-tionale for using Rasch measurement is particular important when reviewers are more far seponse Theory or Ture Score Theory.
- B. Describing the analysis
 - 1. Name and citation or adequate description of software or estimation methodology en
 - 2. Provide a rationale for the choice of fit statistics and the criteria employed to indicate adequat This should include some acknowledgment of the Type I error rate that the critical values imply symmetric statistic. Avalue of 0.7 is further from 1.0 than is 1.3. Using a 1.3/0.7 cutoff for meater error rate for the upper and lower tail of the mean square distribution.

Arthritis & Rheumatism (Arthritis Care & Research) Vol. 57, No. 8, December 15, 2007, pp 1358—1362 DOI 10.1002/art.23108 © 2007, American College of Rheumatology

The Rasch Measurement Model in Rheumatology: What Is It and Why Use It? When Should It Be Applied, and What Should One Look for in a Rasch Paper?

ALAN TENNANT¹ AND PHILIP G. CONAGHAN²

Chapter 19

Reporting a Rasch Analysis

19.1. Introduction

19.1.1. Objectives

19.1.1. Objectives

The Rasch model [RAS 60] is based on a philosophy of measurement that differs considerably from the predominant paradigm in the social sciences, understood as a collective term for sciences outside the domain of the natural sciences. Therefore, reporting a Rasch analysis raises questions as to what to include in a write-up. This chapter suggests a structure of a Rasch analysis report and its elements that corresponds to the philosophy of Rasch measurement. Although it is primarily meant for writing a manuscript, the concept also helps interpret and evaluate Rasch reports. The proposed scheme is on no account an empirical compilation of what sort of findings published Rasch papers actually report. Such an account would merely ensure compliance with what has been done up to now. By contrast, the orientation of this chapter is forward-looking. Furthermore, it is in no way implied that papers deviating from the suggested scheme are necessarily deficient. Conversely, there is no guarantee that papers that do follow the proposal are based on an adequate Rasch analysis. Throughout this chapter is assumed that the instrument development and the underlying Rasch analysis are appropriate. Wolfe and Smith [WOL 07a] provide a good overview of proper instrument development, while Wolfe and Smith [WOL 07b] refer to measure validation using Rasch models. Tennant and Conaghan [TEN 07] focus on the fields of applications of the Rasch model in health and provide guidelines as to what to look for in a Rasch report. Hagquist et al. [HAG 09] demonstrate the potential of Rasch analysis in sursing research [HAG 09].

Chapter written by Thomas SALZBERGER.

Introduction

No single scheme meets the requirements of every Rasch analysis under all circumstances, e.g.,

- Purpose of analysis, e.g.,
 - Existing scale vs. scale development
 - · Applied vs. methodological research
- Scientific dicipline, tradition and familiarity with RMT
- Journal restrictions

Introduction

- The ambitious goals of a Rasch measurement analysis can only be fully met, if the substantive theory of the latent variable is sophisticated enough to not only suggest suitable items but also propose at least a theory-driven order of the items
- The measurement of a quantitative latent variable always refers to a frame of reference, within which specific objectivity holds. Thus, the frame of reference is defined by the conditions under which comparisons are invariant... It goes without saying that a wide frame of reference is desirable.

Introduction

- In a real data set, deviations from perfection as prescribed by the measurement model occur almost inevitably.
- Reasons for misfit have to be disentangled, which can be an intricate task.
- As a rule, changes to the data set, for example the deletion of an item, rescoring of the responses or splitting an item, should be kept to a minimum at each stage of the analysis.
- Theoretical considerations have to precede data analysis. If empirical findings inform the theory, the research becomes exploratory and should therefore be marked as such.

Suggested elements

Construct definition and operationalization Response format and scoring

Element	Report
Latent variable	Definition and substantive theory of the latent variable
Operationalization	Description of the instrument (items) based on the
	definition of the construct, construct map
Response format	Characteristics of response scale (scoring key, number of
and scoring	categories, direction, position in the instrument, verbal
	labeling or description, etc.)

Comment:

A substantive theory suitable for RMT goes beyond a merely qualitative description; it allows for a testable hypothesis of the structure of the construct.

Sample and sampling design

Element	Report
Total population	Definition of total population as a part of the intended
	frame of reference
	sampling frame (from which the sample has actually
	been drawn)
Intended sample	Design, sampling method sample size

Comment:

No distributional assumtions, but consider frame of reference and targeting.

Data

Element	Report
Actual sample	Actual sample size
	Targeting (discuss potential problems due to poor targeting)
	Missing values (frequency, type and consequences)
	Sample characteristics (demographic variables)
Data dependency	Structure of the data in terms of dependency (e.g. repeated measurement)
	Consequences
Context factors	Context factors conditions and circumstances under
	which data were collected, to be considered when
	interpreting outcome of analysis

Measurement model and technical aspects

Element	Report
Fundamentals	Fundamental elements of the Rasch model (model parameters
of Rasch	and their meaning)
measurement	Unique advantages of the Rasch model/Rasch measurement
	theory
	At least stress invariance property/specific objectivity
	as a requirement of measurement
Measurement	Variant of model used (depending on given data/response
model	format), cite relevant references (e.g. [AND 78a, AND 78b, MAS 82]
	for polytomous Rasch model)

Comment:

The extent to which fundamental properties of Rasch measurement should be explained depends on the target audience, the degree of acceptance of the model in the field of research and on the available space.

Measurement model and technical aspects

Element	Report
Estimation	Estimation method used (e.g. conditional maximum likelihood
method	(CML), marginal maximum likelihood (MML) for item parameter
	estimation), maximum likelihood (ML) or weighted maximum
	likelihood (WML) for person location estimation)
	Often a consequence of software chosen, be aware of theoretical consequences
	Provide references (e.g. [MOL 95, AND 03, ZWI 95, WAR 89])
Software	Software used for data analysis, provide reference

Fit analysis

Element	Report
Local	Method used to investigate local independence, extent of
independence	actual local dependence in the data, plausible explanation
	of why local dependence occurs, remedies undertaken
	(e.g. item removal and sub tests)
Unidimensionality	Method used to check for unidimensionality, extent of
	departure from unidimensionality and remedies undertaken to
	resolve multidimensionality
Functioning of	Indicate order of threshold estimates and any problems
response scale	with empirical threshold order, ideally along with plausible
	interpretation of why disordering occurs, report collapsing
	and new scoring scheme
Invariance	Method used to check independence of item (person)
	parameters from respondents (items), see also DIF

Fit analysis

Comment:

The evaluation of a measurement instrument should not be made purely on the basis of statistical evidence. Numerical results need to be accompanied by qualitative interpretation and theoretical considerations.

... anomalies in the data should not simply be accounted for but revealed and exposed. Attempts at plausible explanations are certainly advantageous for future revisions of the scale, should the necessity arise.

Item fit assessment

Element	Report
Test of total fit	Type of test statistic(s) used, (e.g. χ^2 (item–trait
	interaction), interpretation based on sample size,
	targeting and person separation. Discuss theoretical
	implications of item deletion
Test of individual	Type of test statistics used, complement fit analysis
item fit	by investigating graphics
Differential item	Method used to assess DIF,
functioning (DIF)	measures undertaken to account for DIF, implications
	for substantive theory of construct and the frame of
	reference

Comment:

Results of all tests of fit have to be put into perspective, in particular regarding power issues and implications of misfit or marginal fit.

Person fit assessment

Element	Report
Test of	Type of test statistic used, number or proportion of
individual	respondents outside acceptable limits
person fit	Considerations of factors responsible for person misfit
	if persons are deleted, provide a rationale and a
	description of discarded respondents

Comment:

Person misfit implies that the measurement instrument does not work for some respondents as it does for most others.

If there are systematic patterns of person misfit, group means may be seriously distorted and mean comparisons invalidated.

Information

Element	Report
Targeting	Present targeting plot and/or verbal description, refer to purpose of scale when interpreting targeting, discuss consequences for person separation and power of the tests of fit
Precision	Provide estimate of person separation and standard errors at critical levels of the latent variable (e.g. at cutoff values considered important from a clinical perspective), discuss possible reasons for a low person separation index
Power of	Comment on limitations of the power of the test of fit due
test of fit	to, for example, targeting or sample size

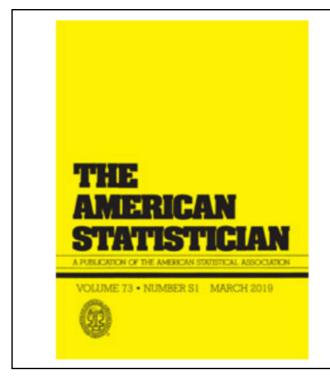
Validity

Element	Report
Fit of data	See measurement requirements and fit assessment
to the model	
Matching substantive	Compare actual item hierarchy with expected hierarchy
theory of latent variable and empirical evidence	based on substantive theory of the construct
Comparison	Compare instrument with other scales measuring the same
with other	latent variable, findings related to deriving a common
instruments	metric by linking existing instruments (if applicable)

Comment:

Whether the scale represents a valid and generalizable instrument depends on the degree to which the analysis was confirmatory. If a large set of items has been reduced to a relatively small subset and/or the data have been altered extensively (e.g. by rescoring or item splitting), we run the risk of capitalizing on chance.

Application and usefulness


Element	Report
Description	List set of items in the final scale (after deletion of
of final	misfitting items) and, in case of rescoring, the final
instrument	scoring scheme
Item	Table of final threshold estimates and overall item
parameters	locations
Person	State person summary statistics (mean, SD) and
parameters	describe shape of distribution
Theoretical	Reflect the consequences of scale purification (in
implications	particular item deletion) for theory of the construct
Application	Findings related to the application of the scale
and usefulness	and its relationship to other constructs
of the scale	

Application and usefulness

Element	Report
Recommendations	Provide recommendations for scale usage, stress strong
	and weak points of the instrument, suggest amending of
	scoring procedures in future applications when appropriate
	(e.g. decrease number of categories in case of
	disordered thresholds, increase number of categories if
	thresholds are properly ordered but precision is too low),
	propose changes to items that do not function properly

Comment:

Traditionally, the relationship of the latent variable and other constructs is integrated into the concept of validity under the label of external validity. However, the assessment of external relationships provides at best indirect evidence of validity. External relationships should be better viewed as aspects of a scale's usefulness.

Taylor & Francis
Taylor & Francis Croup

Moving to a World Beyond "p < 0.05"

Work on new reporting guidelines initiated by the ERRTG

European Rasch Research and **T**eaching Group