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ABSTRACT 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with 
increasing disability and limitations in performance of activities of daily living (ADL) despite 
availability of effective symptomatic therapy. Following an overview of classical test theory 
(CTT) and Rasch measurement theory (RMT), the case of a clinical PD trial aiming to 
demonstrate ADL improvements by using the ADL section (part II) of the Unified PD Rating 
Scale (UPDRS) to measure ADL outcomes is considered and central questions related to its 
validity and interpretation are addressed. It is found that while CTT did not detect any issues, 
RMT in combination with conceptual considerations seriously challenged the role of the 
UPDRS II as an ADL outcome measure. Results are discussed from historical, 
methodological and clinical perspectives.  
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1. Introduction 
 
1.1. Parkinson´s disease 
Parkinson´s disease (PD) was first described by English physician James Parkinson in 1817 
[1]. PD is a progressive neurodegenerative disorder that affects an estimated 0.3% of the 
population at large and 1% of people above 60 years of age [2]. The most typical and cardinal 
features of PD are neurological motor symptoms of bradykinesia (slowness of movement), 
muscle rigidity, tremor, and postural impairments. However, non-motor features (e.g., 
depression, anxiety, sleep disorders, fatigue, cognitive impairment, dysautonomia and pain) 
are also common and make significant contributions to the overall impact of PD [3, 4]. The 
core pathology believed to cause the main motor symptoms is a striatal dopamine deficit due 
to progressive loss of nigrostriatal dopaminergic neurons [3]. Symptomatic dopaminergic 
pharmacotherapy is initially successful but a fluctuating drug response and dyskinesias often 
develop over time. With the occurrence and progression of both motor and non-motor 
symptoms, often in complex and fluctuating patterns, the disease is associated with significant 
consequences in terms of, e.g., deteriorating quality of life and ability to perform activities of 
daily living (ADL) [5-7].  
 
Although the cause of PD remains enigmatic, there have been considerable advances in our 
understanding of PD over the 200 years since the disorder first was described [8]. Similarly, 
therapeutic advances have been significant, particularly during the past 50 to 60 years [8, 9]. 
Up until the 1960s medical therapy was largely limited to anticholinergic drugs that only 
offered limited symptomatic relief. By the late 1960s, levodopa revolutionized PD therapy by 
offering dramatic symptomatic relief. During the following decades, additional therapeutic 
approaches such as dopamine agonists, enzyme inhibitors and functional neurosurgery have 
been introduced that together enable long-term symptom control. However, all available 
therapies hitherto are symptomatic and disease modifying therapies are still lacking.  
 
1.2. Outcome measures in Parkinson’s disease 
The development of effective symptomatic PD therapy highlighted the need for useful and 
relevant outcome measures to determine the effectiveness and value of treatments. As in other 
areas of clinical medicine, such outcome measures have typically consisted of single- or 
multi-item instruments (or “scales”) with defined response categories of various sorts [10]. 
The perhaps earliest instrument proposed to assess therapeutic benefit in PD was that by Duff 
in an early clinical trial [11]. This scale included ten “modal activities” of daily life with 
various degrees of movement complexities (Turning in bed, rising from and returning to bed; 
Dressing/undressing; Performance of the toilet, especially shaving in men; Eating; Walking; 
Turning; Climbing stairs; Speaking; Writing; Facial expression); each item was rated by 
assigning one of six ordered response categories scored 0-5 (No activity; Grossly restricted; 
Moderate restriction, especially by rigidity; Moderate restriction, especially by tremor; 
Activity approaching normal, but slow/clumsy; Activity practically normal). Other early PD 
rating scales include the Schwab & England activities of daily living scale [12] and the 
Northwestern University Disability Scale [13]. Similar to the Duff scale, these also focused 
on activity performance rather than symptom severity. However, it was not until following 
demonstration of the clinical effectiveness of levodopa [14] that instruments for outcome 
assessment in PD started to proliferate. These included, e.g., the Webster, King’s College 
Hospital, Columbia University, and New York University scales [15]. Although some of these 
included aspects of activity performance, their primary focus tended to be on assessing the 
severity of various motor symptoms through standardized neurological examinations. This 
conceptual shift from what today is categorized as Activities to Body functions [16], was 
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probably due to an intention to evaluate the symptomatic effects of levodopa and other 
emerging PD therapies.  
 
The development and use of similar albeit different instruments by various investigators 
hampered the possibility to compare results from various studies [17]. This led to the 
development of the Unified PD Rating Scale (UPDRS), which was based on previously 
available scales and aimed to overcome the problem of incomparability of study results by 
introducing a common means of evaluating PD and therapeutic responses [15]. The UPDRS 
consists of four main parts intended to cover major aspects of PD: Mentation, behavior and 
mood (part I), Activities of daily living (part II), Motor examination (part III), and 
Complications of therapy (part IV). More recently, a modification of the UPDRS was 
conducted by the International Parkinson and Movement Disorder Society (MDS), named the 
MDS-UPDRS [18, 19]. The basic structure remains intact compared to the original UPDRS 
but parts I and II were renamed as “Non-motor aspects of experiences of daily living” and 
“Motor aspects of experiences of daily living”, respectively. 
 
2. Psychometrics and rating scales as health outcome measures  
At this point, it may be appropriate to briefly review approaches to the development and 
quality assurance of scales used in the health sciences, as well as in, e.g., education and 
psychology. 
 
2.1. Basic principles 
Most phenomena (variables) of interest in health outcome measurement (e.g., disease 
severity, quality of life, disability) are not directly observable. Since such latent variables 
cannot be observed or measured directly, one has to rely on observable manifestations or 
consequences of the latent variable. These manifestations are operationalized as items 
(questions, statements, observed behaviour or performance, etc.) that make up the instrument. 
Variations in the observable manifestations (item responses) are assumed to reflect variations 
in the latent variable. This principle is illustrated in Figure 1.  
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Fig. 1. Illustration of the basic instrument design and assumptions underpinning latent variable measurement. 
Items are observable manifestations of the unobservable latent target variable and are expected to reflect 
variations in the latent variable. Observed item responses form the basis in the measurement process used to 
locate the individual on a latent quantitative continuum intended to represent her/his position on the target 
variable, from less to more. 
 
For example, consider that we want to measure activity performance. To do so, we may ask a 
person to report his or her ability to perform various activities. Based on those responses, we 
may be able to assess the person’s location on a latent activity performance continuum. With 
reference to Figure 1, based on some conceptual definition of activity performance, items that 
express relevant activities are presented to the individual, who is asked to indicate her or his 
performance level on each item according to one of two or more ordered response categories 
that each describe a certain performance level. To quantify the qualitative information 
achieved in this manner, each descriptive response category (e.g., none – mild – moderate – 
severe) is assigned an integral numeral (e.g., 0 – 1 – 2 – 3) as a means of partitioning the 
underlying latent continuum into successively increasing (or decreasing) amounts of the 
variable. Item responses are then typically summed into a total score intended as the basis of 
locating the respondent on a continuum from less to more, in order to describe the level of 
individuals or groups of people on the latent variable, make comparisons and evaluate 
changes following therapeutic interventions. 
 
2.2. Classical test theory  
The roots of the principles reviewed in section 2.1. can be traced to the late 19th and early 20th 
centuries, when behavioural scientists endeavoured to quantify latent variables such as 
personality, intelligence, knowledge and attitudes [10, 20]. The science that grew out of this 
work is typically referred to as psychometrics [21], a term that appears to have been first used 
by Francis Galton in his 1879 paper Psychometric experiments [22], which he opens by 
stating that “Psychometry, it is hardly necessary to say, means the art of imposing 

Latent variable
(e.g., fatigue, depression, pain, 

well-being, activity performance)

Descriptors of observable manifestations (rating scale items)
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measurement and number upon operations of the mind…” (p. 149). Other early key 
contributors include, e.g., Francis Edgeworth, Charles Spearman and Rensis Likert [20, 23]. 
The methodologies that resulted from these early scholars are commonly termed traditional, 
or classical test theory (CTT) [20].  
 
The basic idea of CTT is that the observed score (O) can be decomposed into two main 
components, the true score (T) and an error score (e), formally expressed as O = T + e. The 
perhaps most obvious implementation of this expression is found in estimates of score 
reliability, which in general is expressed as the true score variance over the observed score 
variance, formally  
!"
#

!"
#
$!%

#
 ,      (1) 

where &'( is the true score variance and &)( is the error variance [21, 23]. Common 
applications of score reliability include coefficient alpha (“internal consistency”) [24] and 
test-retest stability as assessed using the intraclass correlation coefficient of scores from two 
time points (under the assumption of no change in true score) [25]. Score reliability forms the 
basis for the CTT estimation of measurement uncertainty, which is expressed as the standard 
error of measurement (SEM),  
*+, = *.√1 − 2,     (2) 
where SD is the standard deviation of the observed scores and r is score reliability [21]. 
 
Application of CTT in the development and testing of measurement instruments typically 
involves methods such as coefficient alpha, intraclass correlations, item-total correlation, 
inter-item correlations, associations with other variables, and principal component and factor 
analyses [21, 26]. These are all based on correlations, which is problematic if the purpose is to 
achieve measurement, since correlations concern associations rather than the extent to which 
numbers represent measures. This was noted as early as 1931 by Thurstone who, in the 
preface of his book The reliability and validity of tests remarked that:  
“I do not believe that these correlational methods and particularly the reliability formulae 
have been responsible for much that can be called fundamental, important, or significant in 
psychology. On the contrary, the correlational methods have probably stifled scientific 
imagination as often as they have been of service. As tools in their proper place they are 
useful but as the central theme of mental measurement they are rather sterile” [27].  
Additional caveats include that these correlational procedures are typically parametric, based 
on the Pearson product-moment correlation, which assumes quantitative normally distributed 
data. That is, they are not appropriate for ordered categorical item-level data [28, 29]. 
Furthermore, and related to its reliance on correlations, CTT is distribution dependent. This 
means that estimated psychometric properties cannot be generalized beyond the 
characteristics of the particular sample used in the analyses, which emphasizes the importance 
of representative samples and normal distributions of scores.  
 
In CTT the raw summed total score is taken as a measure of the underlying latent variable, 
which implies linearity and a known unit of measurement. However, numerically coded 
response categories are ordered categorical data where the actual distances between categories 
remain unknown. Strictly speaking, such scores are therefore unsuitable for commonly 
employed traditional parametric statistical operations [29].  
 
2.3. Rasch measurement theory  
In the 1950s, Danish mathematician Georg Rasch proposed a novel approach to latent 
variable measurement [30], nowadays referred to as Rasch measurement theory (RMT). In 
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contrast to CTT, RMT is not based on correlations and does not take the observed total score 
to be a measure of the underlying variable. Instead, RMT is probabilistic rather than 
correlational in nature; as described by Rasch [30]:  
”A person having a greater ability than another should have the greater probability of solving 
any item of the type in question, and similarly, one item being more difficult than another one 
means that for any person the probability of solving the second item correctly is the greater 
one” (p 117). 
In the dichotomous case, where item responses are scored either 0 or 1 (e.g., no/yes, 
disagree/agree, fail/pass), this means that the probability that a person will affirm or pass an 
item is a function of the location of the person (estimated “ability” measure) and the location 
of the item (estimated “difficulty” measure) on the same latent continuum. The more able the 
person is relative to the difficulty represented by the item, the more likely (s)he is to affirm or 
pass that item (and vice versa).  
 
The basic Rasch model is expressed as the natural logarithm (ln) of the probability of success 
(a score of 1) over the probability of failure (a score of 0), which gives a log-odds unit (logit) 
representing the difference between the location (e.g., ability) of the person and the location 
(e.g., difficulty) of the item. Formally  
34 5
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where Pni1 is the probability of person n succeeding (scoring 1) on item i, bn is the location of 
person n, and di is the location of item i. Rasch’s basic model may also be expressed as 
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,     (4) 
which probably is the more common form. As seen in Eq. (3) and (4) the probability of a 
certain response is governed by the distance between item and person locations. That is, if bn 
> di, then Pni1 >0.5 and if bn < di, then Pni1 <0.5, with 1 and 0 being the most likely outcomes, 
respectively. The point along the latent continuum where bn = di, there is a 50/50 probability 
of either outcome; this is taken as the location (level of difficulty) of the item (di). Since 
locations of both persons and items are expressed in logits, they have the same meaning 
across the continuum. However, locations are not absolute but relative, typically in relation to 
the average item location, which commonly is set at 0 logits. 
 
In addition to the estimation of a separate location of each person and each item, the precision 
(standard error) of each location can also be estimated. For person locations the standard error 
is given by 

:
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for a total of L attempted items [31]. In contrast to CTT, this provides direct information on 
the measurement uncertainties associated with each individual person and item location. 
These standard errors are not constant but depend on the total score and vary along the range 
of measurement. In general, measurement uncertainty is greater for people with very low or 
high scores. However, its exact magnitude and pattern depends on the number and density of 
item or (in the polytomous case; see below) response category threshold locations, as well as 
on the alignment (targeting) of person and item/threshold locations. 
 
The Rasch model for dichotomous response categories can be seen as a special case of the 
more general polytomous Rasch model (PRM). The PRM applies when possible responses or 
ratings consist of more than two ordered categories [32-36]. There are several versions of the 
PRM, of which the “rating scale model” (RSM) and the “partial credit model” (PCM) are the 
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most common. While the RSM and PCM have been shown to be mathematically equivalent 
[34], the distinction lies in that the RSM assumes that response categories are the same and 
function the same way across all items, whereas the PCM does not [35]. The PRM takes the 
following general form:  

A>@B =
)BC
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where Pnix is the probability of person n to score x on item i, txi (x=1, 2, …mi) are the 
thresholds that partition the latent continuum of item i into mi+1 ordered categories, and x is 
the manifest item score. Thus, and analogous to the dichotomous case, txi is the point at which 
there are equal probabilities of responding either in category x or category x–1 (given that the 
person scores in either of categories x or x–1). In the PRM, item locations are typically 
defined by the average of the threshold locations of each item.  
 
Since ordered response categories are intended to reflect increasing (or decreasing) levels on 
the latent variable, examination of the locations of the estimated thresholds provides direct 
evidence as to whether response categories work as intended and represent an ordered 
hierarchy from less to more. That is, the increasing levels intended to be represented by each 
item’s ordered response categories are expected to be reflected in the data and manifested as 
an expected ordering of thresholds [33, 37]. This is because each threshold is estimated as if it 
represented a dichotomous item (see above). The situation is therefore analogous to the 
estimation of dichotomous item locations that have an a priori expected hierarchy from less to 
more. Whether thresholds are ordered or disordered is thus a property of the data, and (as in 
the dichotomous case) does not necessarily impact tests of fit between the data and the model, 
which has led to some debate regarding the importance of threshold disordering [37, 38]. 
 
While RMT does not consider the observed total score a measure (but rather an ordered 
count), it is a sufficient statistic. This means that there is no other information than that 
embedded in the total score [39]. Specifically, a person’s observed total score represents the 
sum of that individual’s response probabilities for each item. Another unique feature of RMT 
is what Rasch referred to as specific objectivity [40], which means that person and item 
parameters can be separated. Since RMT is centered on the individual persons and items, 
Rasch set out the following requirement in the preface of his 1960 book [30]: 
“It is further essential that comparisons between individuals become independent of which 
particular instruments – tests or items or other stimuli – within the class considered have been 
used. Symmetrically, it ought to be possible to compare stimuli belonging to the same class – 
“measuring the same thing” – independent of which particular individuals within a class 
considered were instrumental for the comparison” (p VII). 
As further elaborated in his 1977 paper [40], by “objectivity”, Rasch meant that any 
comparison of two people should be independent of what items are used (and vice versa for 
comparisons of items), and the qualifier “specific” refers to that the comparison is restricted 
to a specified frame of reference. Specifically, the frame of reference (F) was defined as: F = 
[O, A, R], where O is the object, A is the agent, and R is the range of possible reactions or 
outcomes [40]. The separation of person and item parameters is realized since the comparison 
of two person locations under the Rasch model is not dependent on any other parameters (e.g., 
item locations) or comparisons. For example, by simplifying and reducing to the interaction 
between single persons and items, it follows from Eq. (3) and (4) that the comparison of two 
persons (bA and bB, respectively) who have responded to the same item with location di 
becomes (bA – di) – (bB – di), where di cancels out and the comparison reduces to bA – bB. The 
situation is symmetrical for comparisons of item parameters. 
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RMT may be seen as a procedure that tests the extent to which items (and response 
categories) successfully have been able to map out the conceptual framework of the variable 
that they intend to represent. The estimated item (di above) and threshold (txi above) locations 
can be seen as representing markers on a latent “ruler”. As such, and analogous to response 
category threshold ordering (see above), the hierarchical item ordering represents evidence as 
to the extent to which the empirical variable expression from less to more is in accord with 
conceptual substantive theory and clinical experience. That is, the empirical item hierarchy 
provides evidence as to how successful items are in operationalizing the latent variable as a 
theoretically or clinically coherent line of inquiry. Item hierarchies may also be useful from a 
clinical perspective. In rehabilitation settings, e.g., a well established hierarchy may serve as a 
means to help optimize and individualize interventions.  
 
However, further quality control indices are also available to guide the measurement process 
through various tests of fit between empirical data and model expectations [31, 39, 41-43]. 
The accordance between data and the model can be assessed visually by inspection of 
empirical item responses relative to model expectations, represented by item characteristic 
curves (ICCs). A common quantification of this relationship in tests of model fit is the 
standardized fit residual (Zni), which has an expected value of 0 and represents the 
discrepancy between observed and expected item responses [31]. The basic fit residual 
expression can be formalized as: 
U>@ =
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where Xni and E[Xni] are the observed and expected responses by person n to item i, 
respectively, and V[Xni] is the variance. Squaring and summing these residuals over all 
persons provides an overall approximate chi-square item statistic. In combination with other 
aspects of the data (e.g., descriptive statistics and reliability), these tests help diagnosing 
departures from model expectations.  
 
RMT (as well as CTT) has two main requirements, unidimensionality and local response 
independence. Unidimensionality means that items should represent one common latent 
variable, and local response independence means that responses to one item should not be 
influenced by responses to one or several other items [39, 44]. These aspects are reflected in 
residual based tests of fit. Fit residuals have an expected value of 0 and a generally acceptable 
range between −2.5 to +2.5. In general, large negative (below −2.5 or so) and positive (above 
+2.5 or so) values signal local response dependence and multidimensionality, respectively. 
Graphically, negative fit residuals are observed as steeper empirical observations than the 
expected ICC, and vice versa for positive fit residuals. The matrix of correlations between 
standardized item fit residuals can also be examined regarding patterns and magnitudes, 
where relatively large correlations suggest local dependency [45].  
 
Analyses of fit residuals can also provide a basis for assessing measurement invariance across 
subgroups of individuals, referred to as differential item functioning (DIF), which can be 
considered an additional aspect of fit. There is a range of approaches to examining DIF [46]. 
For example, analysis of variance (ANOVA) of fit residuals between subgroups of people 
along the measured variable [47]. Because the Rasch model can accommodate missing data, 
DIF can be further examined by adjusting for DIF by splitting the item into two new subgroup 
specific items [48]. For example, an item exhibiting DIF by gender would be split and 
analysed as two separate items, one for men and one for women. In the case of DIF detection 
in two or more items this procedure can be used to identify artificial DIF; if adjustment for 
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DIF in one item removes DIF in the second item, this suggests that the latter represented 
artificial DIF [47]. 
 
It is important to note that these and other tests of fit between data and the model primarily 
should be interpreted interactively and relatively rather than individually and in an absolute 
sense [31, 49]. For example, tests of fit are associated with multiple statistical hypothesis 
testing and corrections for this should be applied [50]. Furthermore, chi-square derived P-
values should not be over interpreted because the distribution of standardized fit residuals is 
only approximately chi-squared. Instead, it is recommended to view chi-square values as 
relative order statistics with no strict cut-off values, where items associated with clearly larger 
chi-squared values than other items signal problems that need further consideration [31]. 
Similarly, it is recommended that residual correlations should be interpreted relative to the 
average matrix correlation [45]. Furthermore, various aspects of the analyses need to be 
accounted for and interpreted interactively, since anomalies may represent deviations from 
expectations that (in part) are due to less than obvious reasons. For example, 
multidimensionality may contribute to the occurrence of disordered thresholds as well as of 
DIF [51, 52]. 
 
3. The central role of rating scale based outcome measures in clinical research 
Rating scale based instruments constitute the main type of clinical trial outcome measures in a 
wide range of clinical specialties, including neurological disorders such as PD. This means 
that scores from such instruments often represent the central dependent variable upon which 
inferences and decisions are made regarding the usefulness of therapies. Therefore, such 
instruments often play a central role in high stakes decision making that ultimately impacts 
the health and lives of ill people, since the quality of clinical study results and inferences is 
directly dependent on the quality of the instruments used to collect data [53].  
 
The central role of outcome measures was also emphasized in a recent UK study conducted 
among people with PD, their carers, families and friends, and health care professionals to 
identify research priorities for PD management [54]. Along with finding a cure and improved 
symptom control, the development of better methods to monitor treatment responses was 
ranked among the top 10 research priorities. Another study [55] investigated how people with 
PD ranked the importance of experiencing therapeutic improvements in 10 predefined areas. 
Results suggested that ADL together with walking and slowness of movements were 
considered the most important areas from the patients’ perspective.  
 
The aspects discussed in the two previous paragraphs illustrate several important points. First, 
if we as clinicians and clinical investigators take our patients and our studies seriously, we 
also need to be serious about our outcome measures. Unless they are treated with full 
scientific rigour, advances in the clinical sciences will be hampered and opportunities to 
improve patient care may be lost. Second, outcome measures do not only need to satisfy more 
or less arbitrary standard heuristics regarding their psychometric qualities, but they also need 
to be inherently meaningful in a manner that links qualitative and quantitative aspects with 
reference to a common linear continuum. In other words, in order to be meaningful and meet 
their purpose as clinical outcome measures, they need to represent (a) measures of the 
variables they intend to quantify; (b) the variables that are important and meaningful to 
patients, their families and health care professionals; and (c) the variables that therapies are 
intended to target. These ideas are largely in line with those of the United States’ Food and 
Drug Administration, as first articulated in their guidance for industry regarding use of 
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patient-reported outcome measures to support labelling claims [56, 57] and more recently in 
their Clinical Outcome Assessment Qualification Program [58].  
 
3.1. An illustrative example 
To illustrate the central role of rating scale based outcome measures in clinical investigations, 
key aspects of a typical double blind, placebo-controlled randomized controlled trial (RCT) 
will be reviewed. 1 The RCT was a post-marketing multicentre phase IV clinical trial that ran 
for 13 weeks and concerned an adjunct drug to be used together with levodopa in people with 
PD who experience wearing-off, i.e., episodes with insufficient efficacy of oral levodopa and 
increased PD symptomatology before the onset of the next scheduled levodopa dose. The 
primary objective was to determine the effect of the combination therapy on ADL. The 
primary outcome measure was the UPDRS II (ADL).  
 
The UPDRS II was introduced in 1987 [15] and has since become the most widely used 
means of assessing ADL outcomes in clinical PD research, as well as in clinical practice [59, 
60]. In a recent review commissioned and conducted by the MDS [60], it was deemed 
“recommended” for measuring disability in PD. The UPDRS II consists of 13 items that are 
intended to be completed as part of a standardized clinical interview where the examiner 
(typically a neurologist or specialized nurse) records historical patient-reported information 
by selecting one of five response categories available for each item (Table 1). Each item is 
scored from 0 (“normal” or absence of problems) to 4 (“severe” or inability to perform task), 
and item scores are summed to provide a total score that is taken to represent the person’s 
level of ADL limitation, from 0 (no limitations) to 52 (severe limitations). 
  

                                                        
1 Reference to the study or the name of the tested drug is not provided since this is irrelevant for the purpose 
of this discussion.  
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Table 1 
Unified Parkinson’s Disease Rating Scale, part II (activities of daily living). 

Items:   
Number Contents 
1 Speech 
2 Salivation 
3 Swallowing 
4 Handwriting 
5 Cutting food and handling utensils 
6 Dressing 
7 Hygiene 
8 Turning in bed and adjusting bed clothes 
9 Falling (unrelated to freezing) 
10 Freezing when walking 
11 Walking 
12 Tremor 
13 Sensory complaints related to parkinsonism 
 
Response categories: a 
Score Description 
0 b Normal 
1 Slight but definite excess of saliva in mouth; may have nighttime drooling  
2 Moderately excessive saliva; may have minimal drooling 
3 Marked excess of saliva with some drooling 
4 Marked drooling, requires constant tissue or handkerchief  
  
0 c Normal 
1 Somewhat slow, but no help needed 
2 Occasional assistance with buttoning, getting arms in sleeves  
3 Considerable help required, but can do some things alone 
4 Helpless  

a Response categories are unique for each item but intend to represent an ordered scale ranging from “normal” 
(or absence of problems) to “severe” (or inability to perform task), that is scored by successive integrals from 0 
to 4 so that higher scores represent more activity limitations. Item scores are summed to provide a total score 
that is taken as a measure of the person’s level of activity limitation. 
b Example from item 2 (Salivation). 
c Example from item 6 (Dressing). 
 
 
Figure 2 illustrates the basic study design and results. Participants were randomly allocated 
either to receive the active adjunct drug or to the control group receiving inactive placebo, in 
addition to levodopa. Clinical assessments were conducted at three time points: at baseline 
(yielding UPDRS II scores of 23.5 and 24.7 in the active and placebo groups, respectively), 
after 5 weeks (not illustrated in Figure 2) and at the end of the trial (13 weeks after baseline). 
At the end of the study, the active group had improved their UPDRS II scores by a mean of 
2.3 whereas the improvement was 0.7 in the placebo group; a difference of 1.6 UPDRS II 
points. This difference between the two study arms was found statistically significant at 
P<0.0001, and it was therefore concluded that the adjunct therapy had good efficacy in terms 
of ADL. 
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Fig. 2. Schematic illustration of the design and results of a randomized controlled phase IV trial of an adjunct 
active drug (A) or placebo (P)  used together with levodopa (LD) in people with fluctuating Parkinson’s disease 
(PD) to determine the effect on activities of daily living (ADL) using the UPDRS II as the primary outcome 
measure. 
 
Several related and central questions arise from the review of this RCT: 

• Can data and results be interpreted in a meaningful way? 
• Are UPDRS II total scores valid representations of their target variable? 
• How does the UPDRS II perform as an ADL measurement instrument in PD?  

These questions are not unique for the RCT reviewed here, but would apply to any study that 
relies on rating scale derived data to represent central endpoint variables. 
 
4. Material and methods 
The questions arising from the study reviewed in section 3.1 were addressed by (i) a review of 
relevant literature, (ii) consideration of the conceptual basis and properties of UPDRS II items 
as operationalisations of the latent activity performance variable, and (iii) by examination of 
its psychometric properties using empirical data from people with PD, but otherwise unrelated 
to participants in the RCT reviewed above. Data were analysed using both CTT and RMT 
methodologies. CTT analyses are provided for two main reasons. First, this is the approach by 
which the UPDRS II has been assessed in the past and upon which it has gained status as a 
“recommended” scale for measuring ADL outcomes in PD [60]. Second, it will provide a 
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point of reference for the results gained from the subsequent RMT analyses, which will be 
useful since the UPDRS II does not appear to have been examined by use of RMT before.  
 
The empirical data used to examine the psychometric and measurement properties of the 
UPDRS II were taken from several studies conducted over the past decade. All assessments 
were conducted by experienced neurologists or nurses specialized in PD and trained in the use 
of the UPDRS. The sample consisted of 675 people with PD (Table 2) representing all five 
stages of PD according to Hoehn & Yahr [61]. There were no missing item responses. The 
original studies were conducted in accordance with the Declaration of Helsinki and all 
participants provided informed consent. 
 
 
Table 2 
Sample characteristics (n=675). 

Age (years), mean (SD; min – max) 63.8 (10; 32 – 88) 
Men / women, n (%) 410 (61) / 265 (39) 
Time since diagnosis (years), mean (SD; min – max) 9.5 (7.2; 0.3 – 44) 
Hoehn & Yahr stage of PD, median (q1 – q3; min – max) a III (II – IV; I – V) 

a Stage I, unilateral disease; Stage II, bilateral disease without postural instability; Stage III, bilateral disease 
with postural instability, somewhat restricted in activities but capable of leading an independent life, mild to 
moderate disability; Stage IV, severely disabled, still able to walk and stand unassisted but markedly 
incapacitated; Stage V, confinement to chair or bed unless aided [61]. 
SD, standard deviation; PD, Parkinson’s disease; UPDRS, Unified PD Rating Scale. 
 
 
CTT analyses were conducted in two ways: (i) the traditional or “default” approach [26, 62] 
that is used in a majority of CTT based psychometric work, including previous studies on the 
UPDRS II [60]. In this approach, correlations (including computation of coefficient alpha) are 
parametric, and dimensionality is assessed using principal component analysis (PCA) of a 
Pearson-based correlation matrix; (ii) a methodologically more appropriate approach [28, 63-
65] based on polychoric/polyserial correlations and minimum rank factor analysis (MRFA). 
In both instances, three criteria were considered för determination of the number of 
dimensions in data based on PCA and MRFA: Kaiser’s eigenvalue >1 criterion, screeplots, 
and parallel analysis [63, 65, 66]. Other criteria include corrected item-total correlations ≥0.3-
0.4, reliability (alpha) ≥0.8, and normal distribution of scores [21, 49]. CTT analyses were 
conducted using R (version 3.4.0) with the “psych” package (version 1.7.5) (www.r-
project.org) and FACTOR (version 10.8.02) [63, 67].  
 
RMT analyses were conducted as described in section 2.3 and focused on the following 
aspects: targeting, reliability, model fit, rating scale response category functioning, and DIF 
by gender, age, and time since diagnosis. Subgroups for analyses of DIF by age and time 
since diagnosis were defined according to their respective median values. RMT analyses were 
conducted according to the PCM version of the PRM using the RUMM2030 program 
(RUMM Laboratory Pty Ltd., Perth, WA, Australia), with the sample divided into ten class 
intervals (subgroups with similar levels according to their estimated locations). Bonferroni 
adjustments for multiple null hypothesis testing were applied (alpha level of significance, 
0.05) [50, 68]. 
 
 
 
 



 15 

5. Results and discussion 
5.1. Can data and results be interpreted in a meaningful way? 
To begin addressing this issue one may first consider what the main result, a mean difference 
of 1.6 on the UPDRS II total score (i.e., about 3% of the possible 0-52 score range) actually 
means, and whether it represents a clinically meaningful or interesting difference. This 
question cannot be answered readily from within the data reported in the RCT. However, 
some investigators have attempted to establish the minimally important difference (MID) for 
the UPDRS II. That is, to determine the minimal degree of change in UPDRS II scores that 
can be considered to be of clinical significance. This was done by relating changes in UPDRS 
II scores to clinician’s global impression of improvement. One such study suggested that 
improvements of about 2 UPDRS II raw total score points may represent the MID among 
people in stages I-II according to Hoehn & Yahr, and for people in Hoehn & Yahr stages II-
III the MID was estimated to about 3 points [69]. Similar or larger values have been reported 
by other authors [70-72]. These estimates are associated with uncertainties, and 95% 
confidence interval (CI) widths have ranged from about 1 to 4.3 and in some cases they 
included a change score of zero [69-71]. However, it remains unknown what these differences 
actually mean in practical terms, i.e. how people with a certain magnitude of improvement (or 
deterioration) actually have benefitted. Returning to the outcomes from our example RCT in 
section 3.1, it is thus unknown whether the observed average difference of 1.6 between 
treatment arms is a clinically meaningful one, although most available evidence reviewed 
above would challenge this.  
 
5.2. Are UPDRS II total scores valid representations of their target variable? 
A central question regarding score interpretation and meaning is what variable scores 
represent. The extent to which scores can be interpreted as representing variations in its target 
variable depends in part on the definition according to which the variable was operationalized 
through its items when the scale was developed. In the case of the UPDRS II, the developers 
provide no conceptual reasoning or variable definition underpinning item selection [15]. 
Therefore, in order to address this issue in relation to an established conceptual framework, 
UPDRS II items were linked to the World Health Organization’s International Classification 
of Functioning, disability and health (ICF) [16]. The ICF provides a conceptualisation and 
classification of different components of health including biological, individual, and social 
perspectives. Its main part defines functioning and disability, which consist of two 
components, (i) Body structures (i.e., anatomical integrity) and Body functions (i.e., 
symptoms and signs, typically refered to as impairments), and (ii) Activities (i.e., the 
execution of tasks or actions) and Participation (i.e., involvement in life situations). In order 
to be valid representations of their target variable, UPDRS II items are therefore expected to 
be linked to Activities according to the ICF.  
 
Conceptual review and linking of items to ICF components revealed that six of the 13 
UPDRS II items (items 4-8 and 11) represent Activities, whereas seven items (1-3, 9, 10, 12, 
and 13) represent Body functions (impairments). Similar results have been reported by Hariz 
and collaborators [73] who also conducted a conceptual review but without linking to the ICF. 
In the absence of a clear variable definition [15], this suggests that the UPDRS II does not 
represent a common unidimensional variable. This has at least two implications. First, it is 
unknown what a certain score means and, second, score comparisons (between or within 
people) lack clinical meaning since the degree of representation of the respective dimensions 
in a particular total score is unknown. That is, the same total UPDRS II score does not 
necessarily represent the same degree of activity limitation and, conversely, two people with 
the same degree of activity limitation may well have different UPDRS II scores due to 
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symptomatic differences. For example, consider two patients whose ADL disabilities are the 
same, as reflected by a score of, say, 10 on items representing activities, but one of them has 
relatively pronounced impairments manifested as a score of 12 on the impairment items 
whereas the other has an impairment score of 5. Their total UPDRS II scores are 22 and 15, 
respectively. Conversely, two persons with the same total UPDRS II score may have quite 
different activity and impairment scores. Both situations inhibit proper interpretation and 
meaning of the total score and may also have different therapeutic implications. Curiously, 
the authors of the MDS review of disability scales appear to have been aware of this when 
they concluded that the UPDRS II is “recommended” as an ADL outcome measure in PD 
[60]: 
“The major weakness is that the 13 items of the UPDRS-ADL do not all assess disability…” 
(p 1460). 
 
Although the UPDRS II was the primary ADL outcome measure in our example RCT above, 
the trial also included two other scales purporting to represent ADL, the Schwab & England 
ADL scale [15] and the ADL scale of the 39-item PD Questionnaire (PDQ-39) [74]. 
However, in contrast to the UPDRS II results according to these secondary outcome measures 
did not show any differences between the two treatment arms, thus adding further concerns to 
the issue of validity and clinical interpretability of scores.2 
 
5.3. How does the UPDRS II perform as an ADL measurement instrument in PD? 
Measurement is strongly linked to substantive theory and conceptualisation [75, 76]. 
Therefore, consideration of the measurement properties of the UPDRS II will, per definition, 
also relate to the two initial questions addressed above. First, results from CTT based analyses 
are presented, followed by those according to RMT. 
 
5.3.1. Classical test theory  
Results from the analyses according to the CTT tradition are summarized in Table 3 and 
Figure 3.  
  

                                                        
2 This is not to say that either of the two alternative ADL scales are preferable over the UPDRS II. That would 
require a thorough review and analysis of these scales as well, which is beyond the score of this paper. 
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Table 3 
Descriptive and psychometric statistics of the UPDRS part II (activities of daily living) according to classical test 
theory (n=675). 

Descriptive statistics  
Total score median (q1 – q3) 7 (0 – 16) 
Total score min – max 0 – 45 
Total score mean (SD) 9.7 (10.2) 
Total score skewness (SE) 1.0 (0.09) 
Total score kurtosis (SE) 0.26 (0.19) 
Total score floor-/ceiling effects, % a 30.7 / 0 
Item median scores, min – max 0 – 1 
Item mean scores, min – max 0.36 – 1.18 
Item SD, min – max 0.72 – 1.29 
Item skewness, min – max 0.73 – 2.24 
Item kurtosis, min – max -0.76 – 4.47 
  
Psychometric CTT statistics  
Corrected Pearson based item-total correlations, min – max b 0.52 – 0.88 
Corrected polyserial based item-total correlations, min – max b 0.63 – 0.92 
Cronbach’s alpha c 0.94 
Cronbach’s alpha when item deleted, min – max d 0.93 – 0.94 
Ordinal alpha e 0.96 
Ordinal alpha when item deleted, min – max d 0.96 – 0.96 
SEM (based on Cronbach’s alpha) f 2.50 
SEM (based on ordinal alpha) f 2.04 
Pearson based PCA  
C1 loadings, min – max 0.57 – 0.91 
C1 / C2 eigenvalues 7.80 / 1.03 
C1 / C2 eigenvalues from parallel analysis g 1.28 / 1.22 
Polychoric based MRFA  
F1 loadings, min – max 0.65 – 0.95 
F1 / F2 % common variance explained 78.80 / 6.30 
F1 / F2 % common variance explained from parallel analysis g 27.60 / 23.60 

a Percentage of persons with the lowest (floor) and highest (ceiling) possible total score; suggested to be 
acceptable if ≤15-20% [49]. 
b The correlation between item score and the total score excluding that item; suggested to be acceptable if 
≥0.30–0.40 [49]. 
c Traditional parametric estimate of score reliability [24]; suggested to be acceptable if ≥0.80 [21]. 
d Should not increase compared with alpha for the total score [21]. 
e An estimate of score reliability based on polychoric correlations [64]; suggested to be acceptable if ≥0.80 [21]. 
f SEM = SD x Ö(1 – reliability) [21]. 
g Parallel analysis based on the 95th percentile of eigenvalues from 500 random correlation matrices obtained 
by empirical data permutation [65]. 
UPDRS, Unified Parkinson’s Disease Rating Scale; q1-q3, first-third quartile; SD, standard deviation; SE, 
standard error; SEM, standard error of measurement; PCA, principal component analysis; C, component; 
MRFA, minimum rank factor analysis; F, factor. 
 
 
Overall, the UPDRS II appears to behave well and meet most CTT criteria. For example, 
scores appear reliable and associated with reasonable measurement uncertainties (with SEM 
values representing about 4-5% of the possible total score range). Furthermore, items appear 
to represent a single common latent variable as suggested from corrected item-total 
correlations as well as from PCA and MRFA analyses according to all three applied criteria. It 
is evident, however, that the scale appears to represent greater activity limitations than those 
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experienced by the sample since almost one third of the people had a total score of zero (i.e., a 
floor effect) and mean and median scores represent only about 13 and 19 per cent of the total 
score range, with a similar pattern among item level scores (Table 3). This indicates that the 
CTT assumption of normally distributed data is not met. However, in line with the 
conclusions by the MDS [60], these results suggest that the UPDRS II generally would be 
considered a psychometrically sound tool for measuring ADL outcomes in people with PD.  
 

 
Fig. 3. Scree plots of the eigenvalues (y axes) for components (x-axis, panel a) and factors (x-axis, panel b) 
identified by principal component analysis (PCA; panel a) and minimum rank factor analysis (MRFA; panel b) 
of item-level UPDRS II data. The dashed horizontal line indicates the cut-off point for determination of the 
number of components and factors according to the eigenvalue >1 criterion. 
 
 
Although not uncontroversial, the SEM has been suggested as a distribution based estimate of 
the MID [77, 78]. Based on this, the SEM estimated from the data presented here would 
suggest an MID of 2-3 for the UPDRS II total score (Table 3). This is similar to previously 
reported MID estimates for the UPDRS II (see section 5.1) but above the 1.6 average group 
difference in the study reviewed in section 3.1. Again, this would challenge the clinical 
meaningfulness of the RCT results. 
 
5.3.2. Rasch measurement theory 
Table 4 and Figure 4 illustrate the targeting and measurement precision of the UPDRS II, as 
derived based on the Rasch model.  
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Table 4 
Targeting and reliability of the UPDRS part II (activities of daily living) according to Rasch measurement theory 
(n=675). 

 Total score Activity score Impairment score 
Targeting a    
Person location, mean (SD) -2.37 (1.88) -2.69 (2.53) -1.82 (1.13) 
Person location, min – max -4.79 – 1.97 -5.42 – 6.28 -3.17 – 0.82 
Item location, mean (SD) 0 (0.5) 0 (0.73) 0 (0.36) 
Item threshold location, min – max -2.75 – 2.99 -3.68 – 5.39 -1.65 – 1.84 
Reliability    
Person separation index b 0.82 0.86 0.51 
Number of distinct strata of people c 3.2 3.7 1.7 

a Relative to the mean item logit location (i.e., zero). 
b Conceptually analogous to Cronbach’s alpha [79].  
c Number of statistically distinct groups of people (separated by ≥3 standard errors) that can be distinguished 
[35].  
UPDRS, Unified Parkinson’s disease Rating Scale; SD, standard deviation. 
 
 
It is seen that the scale represents a continuum from lower to higher levels (ranging 5.75 
logits, from about -2.75 to 3 logits; Fig. 4a, lower panel). This range is similar to that found in 
the sample (ranging approximately 6.76 logits, from about -4.79 to 1.97 logits; Fig. 4a, upper 
panel). However, the scale represents more severe states than those observed in the sample. 
For example, the sample was located an average of about 2.4 logits below the average item 
location (set at 0). As a consequence, people located at the lower range are measured with 
relatively poor precision. This is illustrated by the superimposed 95% CI of person measures 
at various locations along the measurement continuum (Fig. 4a). 
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Fig. 4. (a) Distribution of locations of persons (upper panel) and UPDRS II response category thresholds (lower 
panel) on the common logit metric (x-axis; negative values = better). Superimposed black dot represent the 
uncertainties (95% CIs, right y-axis) of the observed person locations along the measurement range. (b) 
Relationship between raw total UPDRS II scores (y-axis) and their implied linear locations on the logit metric 
(x-axis) with estimated lower and upper 95% CI limits of uncertainty (±1.96SE; represented by horizontal error 
bars) across the full range of all possible UPDRS II raw total scores. 
 
 
For example, the best point of measurement is seen around 0 logits (a 95% CI of ±0.55 
logits), whereas measurement uncertainty is considerably larger (a 95% CI of ±0.96 logits) at 
the average person location (2.4 logits). This is further illustrated in Figure 4b, which depicts 
the estimated relationship between each possible raw total score and its implied linear logit 
measure, including the respective measurement uncertainties. Taking this information into 
account, it is for example seen that the average person location (2.4 logits) represents a raw 
total score of 5 with an uncertainty ranging between total scores of 2 and 11. Refering back to 
the results from the RCT reviewed in section 3.1, raw total UPDRS II scores at baseline were 
about 24 in both treatment arms, which corresponds to a linear measure of -0.15 logits. The 
uncertainty at this location has lower and upper 95% CI limits of -0.71 and 0.41 logits, which 
correspond to raw total scores of 17 and 31, respectively. Clearly, this yields further doubt 
about the clinical significance of a raw total score group difference of 1.6.  
 
Tests of fit between data and the Rasch model are reported in Table 5 and Figure 5. In 
general, tests of fit can be seen as an investigation into the extent to which items successfully 
represent the intended target concept. Table 5 suggests that eight of the 13 UPDRS II items do 
not exhibit statistical fit to the model according to chi-square derived P-values.  
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Table 5 
Item locations and fit statistics of the UPDRS part II (activities of daily living) according to Rasch measurement theory (n=675). 

 Total score  Activity score  Impairment score 
 
Item a 

Location 
(95% CI) b 

Fit 
Residual c 

 
Chi-2 

 
P-value d 

 
DIF e 

 Location 
(95% CI) b 

Fit 
Residual c 

 
Chi-2 

 
P-value d 

 
DIF e 

 Location 
(±95% CI) b 

Fit 
Residual c 

 
Chi-2 

 
P-value d 

 
DIF e 

1bf 0.06 (0.12) 1.32 17.65 0.040 D  na na na na na  -0.18 (0.11) -1.85 24.02 0.004 D 
2bf 0,38 (0.13) 2.39 32.97 <0.001 A  na na na na na  0.16 (0.12) -0.18 10.00 0.351 A 
3bf 1.08 (0.14) 2.65 27.95 0.001 -  na na na na na  0.70 (0.13) -1.31 21.04 0.012 - 
4a -0.89 (0.10) -1.63 14.10 0.119 -  -1.00 (0.13) 3.94 17.17 0.046 -  na na na na na 
5a -0.16 (0.12) -5.20 33.27 <0.001 -  0.19 (0.14) -2.57 16.74 0.053 -  na na na na na 
6a -0.30 (0.12) -5.76 51.69 <0.001 -  0.05 (0.15) -3.25 20.22 0.017 -  na na na na na 
7a 0.47 (0.13) -5.23 44.27 <0.001 D  1.22 (0.16) -2.64 14.25 0.114 -  na na na na na 
8a -0.34 (0.11) -1.45 16.26 0.062 -  -0.15 (0.14) 2.48 10.39 0.320 -  na na na na na 
9bf 0.14 (0.11) 1.93 13.53 0.140 G  na na na na na  -0.14 (0.10) -1.62 15.02 0.090 G, D 
10bf 0.01 (0.11) -1.92 19.57 0.021 D  na na na na na  -0.23 (0.09) -3.57 28.34 0.001 G, D 
11a -0.49 (0.12) -3.70 28.71 0.001 -  -0.31 (0.14) 1.42 8.13 0.522 -  na na na na na 
12bf -0.25 (0.11) 6.60 107.04 <0.001 D  na na na na na  -0.40 (0.10) 3.18 31.11 <0.001 D 
13bf 0.31 (0.11) 5.30 73.19 <0.001 -  na na na na na  0.11 (0.10) 0.85 17.93 0.036 - 

a “a” and “bf” indicates whether items conceptually map to the Activity or Body function (impairments) domains of the ICF. See Table 1 for item descriptions. 
b Item locations are the mean of each item’s response category threshold values expressed in linear log-odds units (logits); 95% CIs are 1.96SE. 
c Standardized fit residuals summarise the deviation of observed from expected responses, and are recommended to range about -2.5 to +2.5 [31]. 
d Bonferroni corrected statistically significant deviations, suggesting item misfit, are bold. 
e A, DIF by age; D, DIF by disease duration; G, DIF by gender after accounting for artificial DIF. 
UPDRS, Unified Parkinson’s Disease Rating Scale; CI, confidence interval; DIF, differential item functioning; na, not applicable. 
 



 22 

Inspection of the chi-square statistics from a relative point of view (Fig. 5a) suggests that 
items 12 and 13 (both representing impairments rather than activities) represent the main 
deviation from model expectation. The graphical representation of fit between data and model 
expectations for these two items supports this (Fig. 5b and 5c) and the pattern of deviation 
suggest that these items may represent a different variable than that captured by the scale as a 
whole. Interestingly, this observation appears to generalize since standardized fit residuals 
suggest a pattern in that items representing impairments primarily appear to signal 
multidimensionaility, whereas activity items tend to show signs of local response dependence 
(Table 5).  
 
 

 
Fig. 5. Graphical representation of tests of fit between UPDRS II items and the Rasch model. Panel (a) Item chi-
square statistics plotted in ascending order with numbers representing item numbers. Panels (b) through (d) 
display item characteristic curves (ICCs) of expected (grey curves) and observed (black dots) item responses (y-
axis) for the 10 class intervals (subgroups of people with different locations; n=41-59 per class interval) along 
the outcome continuum (x-axis). Panels (b) and (c) display the worst fitting items (items 12 and 13, 
respectively). For comparison, panel (d) represents an item with relatively good fit (item 4). 
 
 
Inspection of the matrix of standardized fit residual correlations supported this (data not 
shown). Activity items tended to display larger correlations (up to 0.47) among one another 
than impairment items did (up to 0.27), and activity items loaded positively whereas 
impairment items loaded negatively on the first principal component following a PCA of the 
standardized fit residuals (data not shown). A series of t-tests comparing the person locations 
estimated from activity and impairment items, respectively, showed that person locations 
differed significantly for about 10% of the sample. 
 
Six of the 13 items were also found to exhibit DIF (Table 5), suggesting that they function 
differently across age, gender or disease duration groups. It is also noted that all but one (item 
7) of the six items with DIF represent impairments rather than activities.  
 
Assessment of the empirical functioning of response categories showed that these did not 
work as intended with four items (Fig. 6a). Specifically, two patterns of disordered thresholds 
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emerged, which seem to suggest that either three (items 2, 3 and 10; Fig 6b) or two (item 9; 
Fig 6c) categories would be preferable to the current five response categories. The observed 
disordering may be due to difficulties in distinguishing between five levels of salivation, 
swallowing, falling and freezing, respectively, or overlapping or undistinct response category 
wording. For instance, it is unclear how to clearly separate between “minimal” and “some” 
drooling (item 2; Table 2, Fig. 6b). Indeed, these observations appear to make clinical sense. 
For instance, it is unclear how to clearly separate between “minimal” and “some” drooling 
(item 2; Table 2, Fig. 6b). Rewording of response categories may thus be one way of 
improving these items. However, it is also noted that one reason for disordered thresholds 
may be that the item represents multidimensionality. From this perspective, it is noted that all 
four cases of threshold disordering represented impairment items. 
 
 

 
Fig. 6. Response category functioning for UPDRS II items. Panel (a) provides an overview of all items ordered 
hierarchically from the top. Intersections between color bars represent response category thresholds. Instances of 
disordered thresholds are blank since disordering prevents this type of graphical representaation. Panels (b) 
through (d) provide a more detailed picture, where each colored category probability curve represenst the 
probability (y-axis) of responding in that response category relative to various estimated person logit locations 
(x-axis). Panels (b) and (c) illustrate patterns of disordered thresholds for items 2 and 9, respectively. For 
comparison, panel (d) illustrates an item without disordered thresholds (item 8). 
 
 
In Figure 6a, items have been ordered by their locations (the average of each item’s threshold 
values) to illustrate their hierarchical structure from the “easiest” or most commonly endorsed 
(item 4, handwriting) to the “hardest” (item 3, swallowing). Figure 7a also illustrates the item 
hierarchy but in more detail, including the uncertainties (95% CIs) of each item location.  
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Fig. 7. Hierarchical item ordering with item locations on the y-axis (negative values = better) and item numbers 
on the x-axis (see Table 1 for item descriptions). Error bars are uncertainties (±95% CIs). Panel (a) represents the 
total UPDRS II score, whereas panels (b) and (c) displays the item hierarchies when analyzing activity (b) and 
impairment (c) items separately. 
 
Taken together, in contrast to CTT, conceptual and RMT based evidence suggest that the 
UPDRS II does not provide a useful means for measuring ADL outcomes in PD. Instead, it 
appears to represent two different constructs, i.e., Activities (items 4-8 and 11) and Body 
Functions/impairments (items 1-3, 9, 10, 12, and 13). The main implication of this is that any 
interpretation of results from the UPDRS II (whether raw total scores or linear logit measures) 
is ambiguous.  
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5.4. Can the UPDRS II be improved? 
To understand the extent to which the two embedded activity and impairment item sets may 
provide useful measures of their respective constructs, data were reanalysed using RMT 
methodology but treating the two item sets as two separate scales. 
 
Table 5 and Figure 8 illustrate targeting and measurement precision of the two new UPDRS II 
derived activity (Fig. 8a) and impairment (Fig. 8b) scales. It is seen that activity items 
represent a wider range of measurement (9.07 logits, from about -3.68 to 5.39 logits; Fig. 8a), 
whereas the impairment items are narrower (3.5 logits, from about -1.65 to 1.84 logits; Fig. 
8b) compared to the original UPDRS II (Fig. 4). These effects are also mirrored in the 
estimated person measures and reliabilities (Table 5) where, for example, the 6-item activity 
scale actually exhibits somewhat better reliability than the original 13-item UPDRS II and 
still is able to separate between 3 and 4 statistically distinct strata of people. In contrast, the 7-
item impairment scale exhibits a substantially reduced reliability.  
 

 
Fig. 8. Distribution of locations of persons (upper panels) and response category thresholds (lower panels) with 
superimposed uncertainties (95% CIs, right y-axes) of the observed person locations along the measurement 
range (x-axes). Panel (a) represents the six activity items and panel (b) the seven impairment items. 
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These observations (Table 5, Fig. 8) are likely related to the multidimensionality identified 
with the full UPDRS II scale as well as to the local response dependence that is suggested by 
relatively large negative item fit residual values among the activity items (Table 5). That is, it 
has been shown that multidimensionality (as with the original 13-item UPDRS II) tends to 
decrease reliability and dispersion of person locations, whereas the opposite is seen with local 
response dependence [44]. The relatively narrow locations of response category thresholds in 
the impairment scale (Fig. 8b, lower panel) also impacts the precision of person estimates. In 
addition, narrow response category thresholds imply compromised measurement precision, 
i.e., that impairment items are more difficult to assess. The measurement uncertainty of the 
impairment scale (Fig. 8b, upper panel) at the best point of measurement (around 0 logits) is 
similar to that of the original UPDRS II (95% CIs of ±0.66 vs. ±0.55) but increases rapidly as 
one moves down the latent continuum. For the activity scale, which has a larger spread of 
response category thresholds, the corresponding measurement uncertainty (Fig. 8a, upper 
panel) is larger compared to the UPDRS II (95% CIs of ±1.12 vs. ±0.55) but remains 
relatively stable over a fairly wide range of the latent continuum. However, it should be kept 
in mind that since the frames of reference for the two item sets are different, it is also likely 
that the unit of measurement differs between the two [80]. Therefore, the two are not directly 
comparable with respect to their ranges of measurement and related aspects. 
 
As noted above, the pattern of primarily relatively large negative fit residuals among activity 
items suggest the presence of local response dependence among items 5-7. Items 4 and 8 on 
the other hand tend to show signs of potential multidimensionality (Table 5). However, the 
chi-square statistics of the activity items do not suggest any major problems and inspection of 
the associated ICCs suggest that departures from model expectations are benign (Fig. 9a and 
b). This is also the case for impairment items, although the somewhat curious pattern of item 
12 (Fig. 5b) persisted when these items were analysed as a separate scale (data not shown).  
 

 
Fig. 9. Panels (a) and (b) displays model fit graphically for the worst (item 6) and best (item 11) fitting activity 
items, respectively. Panels (c) and (d) provide overviews of response category functioning for activity and 
impairment items, respectively, as ordered hierarchically from the top. 
 
There was no DIF associated with the activity scale, whereas the DIF identified with five of 
the seven impairment items in the original UPDRS II remained (Table 5). Similarly, whereas 
the response categories for activity items worked as expected (Fig. 9c), the four impairment 
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items with disordered response category thresholds in the initial analysis remained disordered 
(Fig. 9d) according to very similar patterns as those seen earlier (Fig. 6). 
 
Figure 9 also illustrates the empirical hierarchies among activity (Fig. 9c) and impairment 
(Fig. 9d) items. Again, these are illustrated together with their respective location 
uncertainties in Figure 7. Since this appears to be the first investigation of the UPDRS II 
using RMT, it is not possible to relate these results to previous data. However, RMT was used 
to address the measurement properties of the patient-reported PDQ-39 [81], which include a 
6-item ADL scale that has four items in common with the UPDRS II. Interestingly, the 
relative item ordering among the four UPDRS II items (from lower to higher locations: items 
4 – 6 – 5 – 7; Table 5) was very similar to that of their PDQ-39 counterparts (writing – cutting 
food – dressing – washing) [81]. In fact, when accouting for the overlap in location 95% CIs, 
the respective hierarchies are indistinguishable. Given the lack of a conceptual theory for the 
UPDRS II as well as for the PDQ-39 [15, 74], this provides some very tentative evidence of a 
partial structure for activity performance in people with PD. 
 
Taken together, observations from post hoc analyses of the UPDRS II divided into two 
conceptually derived item sets representing activities and impairments, respectively, suggest 
that a reasonable albeit suboptimal measure of ADL outcomes may be derived from the 6-
item activity scale. However, the 7-item impairment scale appears unable to contribute 
towards measurement as evidenced by, e.g., an overly restricted range of measurement and 
inability to separate the sample into even two distinct groups of people. These items are 
therefore likely to contribute little but noise to the total UPDRS II score and should be 
omitted from any use of the UPDRS II that attempts to assess or measure ADL in PD. In their 
current format, these impairment items primarily appear to represent a clinical check-list 
rather than being part of a measurement system. As such, responses to these individual items 
may provide clinically valueable information by their own virtue, but this should not be 
confused with measurement. 
 
5.5. On a road to nowhere? 
As noted in section 1.2, a revised version of the UPDRS has been proposed [18, 19]. 
However, a review of items in part II of the MDS-UPDRS does not suggest that the revised 
version would exhibit any substantial benefits as compared to the original UPDRS II. That is, 
about half of the 13 MDS-UPDRS II items still represent impairments rather than activities 
[16]. Furthermore, testing and development of the scale still relied on CTT (primarily factor 
analyses), and aspects of the final results appear to have been misinterpreted within that frame 
of reference [19]. Indeed, recent RMT based analyses of the MDS-UPDRS have failed to 
show any clear advantages over the original version presented here [82]. With this in mind, it 
is interesting to review early attemps to evaluate ADL outcomes, such as that suggested by 
Duff [11] some 60 years before the MDS-UPDRS (see section 1.2). Considering the Duff 
scale from an ICF perspective as was done with parts II of the UPDRS and MDS-UPDRS 
reveals that at least 9 of its 10 items indeed appear to represent activities [16]. However, 
further and more thorough conceptual reviews integrated with careful RMT analyses will be 
need to allow for firm conclusions.  
 
Another more recent development is the Penn Parkinson's Daily Activities Questionnaire 
(PDAQ) [83]. However, the PDAQ differs from the UPDRS II as well as other ADL 
instruments in some central respects. First, it is not based on patient-report or clinical 
observation but is intended to be completed by family members or others with daily contact 
with the patient. Second, its items lack many central ADL aspects (e.g., those related to 
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mobility) but emphasises cognitive aspects (e.g., attention, comprehension, learning and 
memory) of activity performance. Furthermore, the PDAQ was developed based on item 
response theory (IRT), a family of psychometric models that share certain features with RMT 
but differs in some key aspects. Essentially, whereas RMT articulates requirements for 
measurement that data should meet, IRT is a data modelling approach where item parameters 
additional to the location are introduced to account for the data and the model that best fits the 
data is sought [84-86]. In effect, the introduction of additional item parameters counteracts 
central measurement properties such as invariance and sufficiency, which has caused IRT to 
be challenged as a valid approach to measurement [87]. 
 
While RMT is increasingly applied in health outcome measurement, CTT remains the 
dominant paradigm. In view of this and the contrasting results between CTT and RMT 
presented here it is interesting to consider the results from a recent study by Maul, in which 
empirical responses to items experimentally designed to measure nothing were analyzed using 
common CTT methodologies such as coefficient alpha and factor analysis [88]. It was found 
that items inquiring about either a phenomenon that does not exist (“gavagai”), nonsense 
words (stock lorem ipsum text) or completely blank items (response categories without items) 
rendered responses that met common CTT criteria and did not necessarily perform less well 
than real items did. Indeed, comparing those results with the CTT based analyses presented 
here does not suggest that the UPDRS II appears convincingly better than, e.g., meaningless 
lorem ipsum items.  
 
While Maul [88] did not test his experimental items using the Rasch model, it must be 
emphasized that since this model (like any numerically based analysis) in itself only processes 
numbers, there is no guarantee that it would have yielded results contradicting those based on 
CTT. For example, Hobart et al. [89] tested an instrument intended to measure fatigue that is 
commonly used in clinical trials and other reseach. They found that it appeared to work well 
according to CTT as well as RMT based analyses, despite the fact that a multidisciplinary 
Delphi panel of experienced health care professionals agreed that none of its items was 
fatigue specific [89].  
 
These experiences illustrate the fundamental importance of a sound theoretical and conceptual 
basis in order to achieve meaningful measurement. While this is true regardless of what 
methodology is used for measurement quality assurance, it is inherently embedded and 
integrated in RMT [30, 39, 76, 90]. In addition, RMT represents an approach to latent variable 
measurement that in contrast to CTT is based on measurement principles from the physical 
sciences and has been considered to belong to the same class of models that metrologists 
consider paradigmatic of measurement [39, 91-93]. This has also been supported by empirical 
demonstrations that RMT (in contrast to, e.g., CTT and IRT) is the psychometric approach 
that best enables measurement [87]. It is therefore encouraging to see that the application of 
RMT is proliferating in the health sciences. However, to fully benefit from its potentials and 
move towards true advancement within health outcome measurement it is suggested that the 
field should focus on coordinating efforts towards conceptually based variable definitions and 
integrations into quality assured measurement systems [76, 94, 95]. 
 
6. Conclusions 
This paper has demonstrated the central role of health outcome measures in clinical research, 
and their impact on decisions regarding the value of therapies, as exemplified by reviewing an 
RCT aiming to demonstrate ADL benefits in people with PD by using the UPDRS II as the 
primary outcome measure. Careful examination of the UPDRS II through reviewing the 
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literature, conceptual considerations and analyses of empirical data were conducted to better 
understand RCT results and the role of the UPDRS II as an outcome measure. CTT analyses 
corroborated previous studies by suggesting that the UPDRS II is adequate as an ADL 
outcome measure. However, conceptual considerations challenge this conclusion. Application 
of RMT to the same data revealed a fundamentally different picture that seriously challenge 
the validity of the UPDRS II as an ADL outcome measure. Splitting the scale into two item 
sets representing the two identified conceptual constructs of activity limitations and 
impairments resulted in a potentially useful activity measure, and a collection of impairment 
items that may or may not provide clinically valueable information. 
 
The experiences from this “case study” appear to be symptomatic for legacy instruments, 
which still dominate outcome measurement in the clinical sciences. It is therefore time for 
clinicians and clinical investigators to take advantage of advances in latent variable 
measurement. This would not only be likely to create new opportunities to improve outcome 
measurement and patient care, but it may also provide a means to better understand illness.  
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Figure Legends  
Figure 1. 
Illustration of the basic instrument design and assumptions underpinning latent variable 
measurement. Items are observable manifestations of the unobservable latent target variable 
and are expected to reflect variations in the latent variable. Observed item responses form the 
basis in the measurement process used to locate the individual on a latent quantitative 
continuum intended to represent her/his position on the target variable, fromm less to more. 
 
Figure 2. 
Schematic illustration of the design and results of a randomized controlled phase IV trial of an 
adjunct active drug (A) or placebo (P) used together with levodopa (LD) in people with 
fluctuating Parkinson’s disease (PD) to determine the effect on activities of daily living 
(ADL) using the UPDRS II as the primary outcome measure. 
 
Figure 3. 
Scree plots of the eigenvalues (y axes) for components (x-axis, panel a) and factors (x-axis, 
panel b) identified by principal component analysis (PCA; panel a) and minimum rank factor 
analysis (MRFA; panel b) of item-level UPDRS II data. The dashed horizontal line indicates 
the cut-off point for determination of the number of components and factors according to the 
eigenvalue >1 criterion. 
 
Figure 4. 
(a) Distribution of locations of persons (upper panel) and UPDRS II response category 
thresholds (lower panel) on the common logit metric (x-axis; negative values = better). 
Superimposed black dot represent the uncertainties (95% CIs, right y-axis) of the observed 
person locations along the measurement range. (b) Relationship between raw total UPDRS II 
scores (y-axis) and their implied linear locations on the logit metric (x-axis) with estimated 
lower and upper 95% CI limits of uncertainty (±1.96SE; represented by horizontal error bars) 
across the full range of all possible UPDRS II raw total scores.  
 
Figure 5. 
Graphical representation of tests of fit between UPDRS II items and the Rasch model. Panel 
(a) Item chi-square statistics plotted in ascending order with numbers representing item 
numbers. Panels (b) through (d) display item characteristic curves (ICCs) of expected (grey 
curves) and observed (black dots) item responses (y-axis) for the 10 class intervals (subgroups 
of people with different locations; n=41-59 per class interval) along the outcome continuum 
(x-axis). Panels (b) and (c) display display the worst fitting items (items 12 and 13, 
respectively). For comparison, panel (d) represents an item with relatively good fit (item 4). 
 
Figure 6.  
Response category functioning for UPDRS II items. Panel (a) provides an overview of all 
items ordered hierarchically from the top. Intersections between color bars represent response 
category thresholds. Instances of disordered thresholds are blank since disordering prevents 
this type of graphical representaation. Panels (b) through (d) provide a more detailed picture, 
where each colored category probability curve represenst the probability (y-axis) of 
responding in that response category relative to various estimated person logit locations (x-
axis). Panels (b) and (c) illustrate patterns of disordered thresholds for items 2 and 9, 
respectively. For comparison, panel (d) illustrates an item without disordered thresholds (item 
8).  
 



 37 

Figure 7. 
Hierarchical item ordering with item locations on the y-axis (negative values = better) and 
item numbers on the x-axis (see Table 1 for item descriptions). Error bars are uncertainties 
(±95% CIs). Panel (a) represents the total UPDRS II score, whereas panels (b) and (c) 
displays the item hierarchies when analyzing activity (b) and impairment (c) items separately. 
 
Figure 8. 
Distribution of locations of persons (upper panels) and response category thresholds (lower 
panels) with superimposed uncertainties (95% CIs, right y-axes) of the observed person 
locations along the measurement range (x-axes). Panel (a) represents the six activity items and 
panel (b) the seven impairment items.  
 
Figure 9.  
Panels (a) and (b) displays model fit graphically for the worst (item 6) and best (item 11) 
fitting activity items, respectively. Panels (c) and (d) provide overviews of response category 
functioning for activity and impairment items, respectively, as ordered hierarchically from the 
top.  
 
 
 


